Cloud Orchestration

What is a cloud?...

- ==>
 - distributing the load automatically
 - (and selling more than what you have thin provisioning everywhere...)
- not necessarily virtualized IaaS can also be bare-metal
 - immediate delivery
- pay-as-you-use vs. unlimited
- QoS everywhere and accounting
- customers can use APIs

Warning: this lecture is about setting-up your own cloud

- no AWS
- no GCP
- no Azure
- vou're the cloud administrator here, not the *luser*
- and it fits the sovereinty and privacy laws better, as long as your infrastructure is on the national territory

VMM Orchestrators

Different feature sets

- 1. just the UI
- 2. just an orchestrator
- 3. UI + orchestrator

VMM farm UIs

- ► VMware vSphere vCenter
- Citrix XenCenter
- ► RHEV == oVirt (just like RHEL == CentOS)
- ► HyperV
- Proxmox (KVM & LXC)

VMM orchestrators

- XCP-NG (XEN)
- Ganeti (XEN & KVM)
- Apache CloudStack (VMware, KVM, XenServer, XCP, Oracle VM, Hyper-V)
- OpenNebula (got orchestrator?)
- DanubeCloud (no orchestrator)
- OpenStack just like k8s... why so much pain?

LAB // test Apache CloudStack

LAB // find the hot-migration scheduler algorithms in those code bases and discuss/compare techniques. On which hardware resources does it bases its decision?

// Questions on VMM UIs and orcl	nestrators?	

==> Container engines' timeline

- chroot (1982)
- FreeBSD jails (2000)
- ▶ Solaris Zones / Containers (2004)
- ► AIX WPARs (2007)
- ► Virtuozzo / OpenVZ (resp. 2000 / 2005)
- Ubuntu LXC / LXD (2008)
- systemd-nspawn (2010)
- Docker (2013)
- runc/containerd (Jul 16, 2015)
- Singularity (2015)

What is a chroot?...

==> the thing you sometimes need for rescuing a system

==> the timing you sometimes need for researing a system

Anyhow, which engine are good to choose?...

There are also chroot-capable daemons (named, unbound, postfix)

- ==> stick with the standards
- (ideally jails but that's for Free-and-DflyBSD)
- Docker for apps and micro-services
- LXC for systems

LAB // are there orchestrators for BSD jails?

LAB // study and retro-PoC the sysjail vuln on Net-or-OpenBSD.

Choose your image wisely

musl instead of glibc

- ► Alpine Linux
- also possible with Void Linux and other distros

Weird kinds of system-level virtualization

something in between...

- ► User-mode Linux (UML)
- DragonflyBSD vkernel

Unikernel

something entirely different...

- binary built-up on purpose
- libraries within it
- optimized run-time
- best-performance and best-security (no libc)

Container orchestrators

- Docker Swarm still-not-deprecated
- ▶ K8S, Minikube, Play-with-k8s too much hype
- OpenShift just another layer on top of K8S
- Rancher

Better DIY...

- instances on every node + load-balance health checks
- instances on every node + one VIP per node (floating vs. CARP/VRRP)

Multi-orchestrators

► ManageIQ – orchestrate orchestrators (VMM & Containers)

LAB // is it able to schedule guest hot-migrations by itself?

LAB // is it able to schedule instance shuffling by itself?

Containers as guests

- docker-machine
- Kata Containers

Container orchestration history

it's a conspiracy

- ▶ Apache Mesos abandonned in favor of K8S
- Catlle (Rancher's engine) *idem*
- Docker Swarm (2014) announced dead but still alive
- ► Kubernetes (7 June 2014) *the only one remaining*

Redhat is pushing CRI-O (minimal Container Runtime Interface) for K8S

Swarm features

- overlay network
- > storage=SSD
- easy to setup IP endpoints for the service to load-balance against

K8S features

- configuration replication with etcd
- ► Horizontal Pod Autoscaler (HPA)
- ▶ Ingress built-in endpoint management and load-balancer
- Cloud Providers
- Dynamic Volume Provisioning

Horizontal Pod Autoscaler (HPA)

trashing issue mitigated by delay setting (default 5 minutes)

Now let's try	to plug our lo	oad-balance	er against K	78 <i>S</i>	
What settings	do we have d	at hand?			

==>

ClusterIP (default)

LoadBalancer

NodePort

ExternalName

ClusterIP (default) - Exposes the Service on an internal IP in the cluster. This type makes the Service only reachable from within the cluster.

NodePort - Exposes the Service on the same port of each selected
Node in the cluster using NAT. Makes a Service accessible from

outside the cluster using: Superset of ClusterIP.

Superset of NodePort.

LoadBalancer - Creates an external load balancer in the current cloud (if supported) and assigns a fixed, external IP to the Service.

ExternalName - Exposes the Service using an arbitrary name (specified by externalName in the spec) by returning a CNAME

record with the name. No proxy is used. This type requires v1.7

or higher of kube-dns

Example parameters...

// Questions on Docker farm orchestration?	

Don't worry be happy

 $technology\ intelligence\ \&\ research\ lab\ opportunities$

LAB // PoC k8 for serving GPGPUs

LAB // PoC other means of serving GPGPUs

Using GPGPUs with Kubernetes https://blog.ubuntu.com/2018/12/10/using-gpgpus-with-kubernetes

Schedule GPUs

https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

General-purpose computing on graphics processing units https://en.wikipedia.org/wiki/Generalpurpose_computing_on_graphics_processing_units

LAB // find out what kernel modules do what exactly for Docker
LAB // and idem for the few more modules K8S requires

LAB // search about privesc exploits and techniques against containers. Discuss the supposed attack vectors.

LAB // K8S was vulnerable as of Dec 5 2018. Retro-PoC that.

Kubernetes Flaw is a "Huge Deal," Lays Open Cloud Deployments https://threatpost.com/kubernetes-flaw-is-a-huge-deal-lays-open-cloud-deployments/139636/

This is the end