
Practical Security

System and Network Administration

2024/25

Pierre-Philipp Braun <pbraun@nethence.com>

mailto:pbraun@nethence.com

Table of contents

▶ Security Basics
▶ MITM Explained
▶ PKIX
▶ Applied Cryptography
▶ Tips & Tricks

Security Basics

Assuming a server or network device – not a desktop computer

What are the most important things to do in terms of security?…

==> System & network security in a nutshell
▶ exposed ports
▶ security patches
▶ no passwords (or at least no weak passwords)

exposed ports

0. we’re talking l4 ports1
1. shutdown unused services
2. l3/l4 firewall & network segment acls

1<https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers>

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

How to check what’s listening from within the system again?…

==> that should be clear by now

old-school

netstat -lntup

-e

new-school

ss & such

But that’s not enough – need to check remotely in case a rootkit is hiding.

How to check what’s listening remotely?…

==> not just TCP and top 1,000

time nmap -sTUV -p0-65535 CIDR -Pn

takes a while when firewall DROPs

-T4 good public network pipes

-T5 internal network

enable ICMP to scan yourself faster ^^

// Questions?

security patches

aka system & image upgrade policies

System auto-update: need to evaluate the risk of downtime
▶ Debian/Ubuntu restarts the services after upgrade
▶ but it doesn’t for some third-party repositories e.g. nginx.org
▶ RHEL/CentOS does not
▶ care about listening daemons mostly
▶ kernel patch - what part is truly in use? (downtime)

Docker image auto-update: <http://docs.renovatebot.com/docker/>

// Questions?

http://docs.renovatebot.com/docker/

no passwords

▶ better do not use passwords at all
▶ DO NOT HOST USER PASSWORDS IN CLEAR:

<https://haveibeenpwned.com/>
▶ eventually use third-party resources e.g. GitHub and such (OAuth2,

OIDC)

https://haveibeenpwned.com/

How would you authenticate/authorize users without passwords?…

==> SSH privkey, PKIX client certificate, USB authentication devices, …

and possibly TPM-based for the first two

(see SNE/AS Trust Anchors lecture for more details)

How would a company live without a Directory Service at all?…

==> e.g. OAuth2 against GitHub

// Questions?

// Questions on security basics?

MITM Explained

just in case you didn’t get it yet

Two ways to explain things
▶ academic way
▶ military way

Alice─────────► Trudy ──────────────► Bob

Eve

Mallory

danteslab-eng.blogspot.ru

PKIX

What is the purpose of an SSL certificate?…

not just a key pair

==> bind pubkey & domain name and signed by (intermediate) authority

Looks like there’s only one root…

The PKIX signing process

▶ generate CSR (openssl req)
▶ get it signed by intermediate

Works many times… and at the same time

Which of those three can sign others?…

==> root CA and intermediates – just not leaf-node certificates

SSL/TLS certificate types

▶ Signed by official CAs (embedded Mozilla & Chrome)
▶ Signed by a private CA (pushed to workstations or added once)
▶ Self-signed (just like a root cert)

Ubuntu ships self-signed for convenience (what about Debian?)

/etc/nginx/snippets/snakeoil.conf

/etc/ssl/certs/ssl-cert-snakeoil.pem

/etc/ssl/private/ssl-cert-snakeoil.key

// Questions on PKIX?

Applied Cryptography

Categories for crypto
▶ Symmetric ciphers
▶ Public Key ciphers
▶ Hash algorithms & PRNG
▶ Key negotiation algorithms

Name a few symmetric ciphers (block vs stream)…

64-bit symmetric block ciphers

DES, 3DES

IDEA

Blowfish (Bruce Schneier)

128-bit symmetric block ciphers

AES (Rijndael, NIST)

Camellia (Japan)

Twofish (Bruce Schneier)

SEED (South Korea)

ARIA (based on AES, South Korea)

GOST (w/o the H, Russia)

LAB // run ГОСТ encryption between e.g. LibreSSL and GNUTLS

Symmetric stream ciphers

FISH (not seen)

RC4 (deprecated)

CHACHA20

A5/1

Name a few public key ciphers (or signature schemes)…

Public key (asymmetric) ciphers

RSA encryption

ElGamal encryption // LAB

Signature schemes

RSA signature

DSA

ECDSA

ElGamal signature // LAB

Schnorr signature // LAB

Typical use-case (SSL)
▶ RSA/ECDSA to authenticate
▶ negociates a secret and goes symmetric
▶ and eventually takes advantage of AES offloading

Modes of operation (for block cipher)

ECB (there's a catch)

CBC (to-be deprecated)

CTR (make it a stream)

GCM (idem)

What do you do for the last block, if there is not enough data to fit-in?

Padding

For the last block and with non-streaming modes

zero-padding (the catch is not that obvious)

PKCS#1 v1.5

PKCS#1 v2.0 + RSAES-OAEP

PKCS#1 v2.1 + RSAES-PSS

What about hash functions, any names in mind?…

Hash functions

MD5 (not really deprecated)

SHA-1 (only deprecated for SSL certs)

SHA-2 (SHA-256, ...)

SHA-3 (NIST 2015) -- sponge construction

Note

PKCS#1 v2.2 + SHA 224/256/512

Something about Integrity?…

Loads of acronyms…
▶ MAC Medium Access Control address (OSI layer 2)
▶ MACMessage Authentication Code (more than just a hash)
▶ MAC Mandatory Access Control (vs. DAC/RBAC)

▶ aka protected checksum & error detection code
▶ aka keyed hash: also message authentication based on symmetric

secret
▶ (sign & verify but using the same secret)
▶ can be considered as a one-time pad when used for a single message

HMAC— two rounds with inner and outer derived keys

HMAC-MD5 SHA-1 SHA-2 SHA-3

Faster MAC with universal hashing

UMAC x32 optimized

VMAC x64+ optimized

SipHash (Daniel J. Bernstein)

Poly1305 (Daniel J. Bernstein)

MAC based on mode of operation

(CBC?) OMAC CCM GCM PMAC

The special case of AEAD

happy-happy combinations e.g.

AEAD_AES_128_GCM

AEAD_AES_128_CCM

AEAD_AES_SIV_CMAC_256

AEAD_AES_128_OCB_TAGLEN64

AEAD_CHACHA20_POLY1305

AEAD_AES_128_GCM_SIV

▶ MAC on both associated data and ciphertext
▶ MAC depends on context in neighbor messages/blocks

PRNG

▶ “pseudo”
▶ cryptographically secure pseudorandom generators (CSPRGs)
▶ pseudorandom generator theorem –> one-way function

implementations
▶ stream ciphers (RC4, CHACHA20)
▶ block cipher with CTR or OFB modes

related to
▶ trapdoor operation
▶ hash functions (for the seed only?)

/dev/random -- requires initialized entropy

-- previously required enough entropy

(and /dev/arandom behaved like what it now does)

/dev/urandom -- unlimited (non-blocking)

cat /proc/sys/kernel/random/entropy_avail

cat /proc/sys/kernel/random/poolsize

Are there ways to get a better entropy?…

Hardware

HWRNG & rng-tools

Radio-based (using noise)

User-space software

HAVEGE (HArdware Volatile Entropy Gathering and Expansion)

timer_entropyd

randomsound

Name a few key agreement algorithms…

Key exchange algorithms

DH

DHE (PFS / ephemeral)

ECDH

ECDHE (PFS / ephemeral)

Note it’s also possible to simply encrypt the secret and send it to Alice

CIA triad / quadrad / polyad

▶ Confidentiality
▶ Integrity
▶ Availablility
▶ (Non-repudiation)
▶ Authenticity (Authentication)
▶ (Accountability)

Apply secure channels & crypto to those concepts

…which one leverages a secret (symmetric cipher)?

…which one leverages public key cryptography?

…and which one protects against MITM?

==>
▶ Confidentiality –> symmetric encryption & key agreement (DH)
▶ Integrity –> hash function (possibly using privkey)
▶ Availablility
▶ (Non-repudiation)
▶ Authentication –> public key crypto

▶ –> auth with private key / sign
▶ –> and also used for key agreement (RSA)

▶ (Accountability)

How to authenticate / is any public key or certificate fine?…

==> you need a Trust Anchor

Is it a BI-DIRECTIONAL process?…

==> you need to authenticate both sides if server is not public

Client authenticates server

public HTTPS -- SSL -- PKIX chain of trust

Stub-client or forwarder authenticates answer

DNS -- DNSSEC chain of trust

Bi-directional

SSH -- client does TOFU fingerprint & PIN host pubkey

SSH -- server checks authorized pubkeys

Wifi -- PSK (when there is)

BTS authenticates handset

GSM 2G -- SIM card

// Questions on practical cryptography?

Tips & Tricks

▶ debian/ubuntu auto-update
▶ slackware linux auto-update
▶ bsd systems auto-updates
▶ initiate an SSL session & read an X.509 certificate
▶ remote sniffing

debian/ubuntu auto-update

apt install unattended-upgrades

dpkg-reconfigure -plow unattended-upgrades

slackware linux auto-update

choice 1: autoslack
LAB // PoC autoslack for 14.2 vs current2 – is it too dangerous to
auto-update current and why?

choice 2: DIY
vi /etc/cron.daily/DAILY

don't do that on current

/usr/sbin/slackpkg update

/usr/sbin/slackpkg -batch=on -default_answer=y upgrade-all

2<http://www.slackware.com/~david/zuul/autoslack/>

http://www.slackware.com/~david/zuul/autoslack/

auto-updates on BSD systems

choice 1: automated already?
▶ OpenBSD: syspatch utility
▶ MirBSD: idem?

choice 2: possibly scriptable
▶ FreeBSD: ?
▶ DragonFlyBSD: ?
▶ NetBSD: grab from nightly builds and erase everything but /etc/

Initiate an SSL session (becomes telnet)

openssl s_client -connect yandex.ru:443

Q

Read an X.509 certificate

openssl x509 -in domain.crt -noout -text

Can we do both at once?…

==>

echo Q | openssl s_client -connect yandex.ru:443 \

| openssl x509 -noout -text

Super-duper remote sniffing

ssh -l root GOT_MIRROR \

"/usr/sbin/tcpdump -n -e -i eth3 -s0 -w - " \

| wireshark -k -i -

-e also show MAC addreses

-s0 backward compatible w/ now default packet snapshot

length of 262144 bytes

▶ The interface is plugged to a dedicated port-mirror here
▶ …otherwise need to filter out ssh itself)

Almost done for this lecture

What were the three most important things to take care of, security-wise?…

==>
▶ open ports vs. network segments vs. firewall
▶ KEEP YOUR SERVERS AND NETWORK DEVICES

UP-TO-DATE !
▶ weak passwords = no passwords

This is the end

