Practical Security

System and Network Administration
Revision 3 (2021/22)

Pierre-Philipp Braun <pbraun@nethence.com>

mailto:pbraun@nethence.com

Table of contents

P Security Basics

» MITM Explained

P PKIX

P Applied Cryptography
P Tips & Tricks

Security Basics

assuming a server or network device —not a desktop

What are the most important things to do in terms of security?...

==> System & network security in a nutshell

P shutdown unused services + 14 firewall + 13/acl
P system updates
P> no passwords (or at least no weak passwords)

How to check what’s listening locally again?...

==> that should be clear by now
netstat —-lntup

Also check remotely for clarity and in case a rootkit is hiding some
listening port

nmap -sTUV -p0-65535 YOUR-SERVER

Auto-updates policy

Need to evaluate the risk of downtime

P> Debian/Ubuntu restarts the services after upgrade

P> but it doesn’t for some third-party repositories e.g. nginx.org
P RHEL/CentOS does not

P> care about listening daemons mostly

P kernel patch - what part is truly in use? (downtime)

Auto-updates on GNU/Linux

update systems —> licensing lecture

Ubuntu

apt install unattended-upgrades

dpkg-reconfigure -plow unattended-upgrades
Slackware choice 1:

LAB // PoC autoslack for 14.2 vs current! — is it too dangerous to
auto-update current and why?

Slackware choice 2: DIY
vi /etc/cron.daily/DAILY
don't do that on current

/usr/sbin/slackpkg update
/usr/sbin/slackpkg -batch=on -default_answer=y upgrade-all

Thttp://www.slackware.com/~david/zuul/autoslack/

http://www.slackware.com/~david/zuul/autoslack/

Auto-updates on BSD systems

Possibly scriptable

P FreeBSD: ?
P DragonFlyBSD: ?
P> NetBSD: grab from nightly builds and erase everything but /etc/

goes as
tar xzpf base.tgz -C /
Possibly automated

P> OpenBSD: syspatch utility
P MirBSD: idem?

Network security in a nutshell

Split activities into VLANs

> e g. DMZ, VoIP, user, mgmt/backup
P> cluster/storage network not routed (but pivot possible)
P eventually ACLs for mgmt

Know your location - what network segment?

P got public IP?
P —or— NAT outbound traffic allowed?
P how many enemies you have?

Isolate insecure industrial tools and software e.g. SCADA

Userland rootkit checkers

some good practice I wouldn't recommend
Regularly check against rootkits

P makes me think of grand-ma who absolutely needs an anti-virus
P> it most probably won’t detect anything targeted. ..

LAB // evaluate those detectors against DIY modifications. ..

mainly GNU/Linux

P Lynis

P Chkrootkit
P Rkhunter

P ClamAV

» LMD

—or— simply overwrite the binaries (BSD & Slackware)

Almost done for this chapter

What were the three most important things to take care of on a server,
security-wise?...

==>

P> open ports vs. network segments vs. firewall

» KEEP YOUR SERVERS AND NETWORK DEVICES
UP-TO-DATE !

P> weak passwords = no passwords

// Questions on security basics?

MITM Explained

Jjust in case you didn't get it yet
Two ways to explain things

P academic way
P military way

Alice——— Trudy —— » Bob

Eve

Mallory

ANGOLA \\\\\\\\ {N}K

NAMIBIA

PKIX

What is the purpose of an SSL certificate?...

not just a key pair

==> bind pubkey & domain name and signed by (intermediate) authority

Root Certificate

Intermediate

igns Root Certificate

Signs 551 Certificate

Looks like there’s only one root...

PKI

Certificate
Signing

(CSR)

Works many times... and at the same time

Which of those three can sign others?...

==> only root CA and intermediates. you just have a leaf-node certificate.

SSL/TLS certificate types

P Signed by official CAs (embedded Mozilla & Chrome)

P> Signed by a private CA (pushed to workstations or added once)
P Self-signed (just like a root cert)

Ubuntu ships self-signed for convenience (what about Debian?)

/etc/nginx/snippets/snakeoil.conf
/etc/ssl/certs/ssl-cert-snakeoil.pem

/etc/ssl/private/ssl-cert-snakeoil.key

// Questions on PKIX?

Applied Cryptography

Categories for crypto

P Symmetric ciphers
P Public Key ciphers
P Hash algorithms & PRNG
P Key negotiation algorithms

Name a few symmetric ciphers (block vs stream)...

64-bit symmetric block ciphers

DES, 3DES
IDEA

Blowfish (Bruce Schneier)
128-bit symmetric block ciphers

AES (Rijndael, NIST)

Camellia (Japan)

Twofish (Bruce Schneier)

SEED (South Korea)

ARIA (based on AES, South Korea)
GOST (w/o the H, Russia)

LAB // run TOCT encryption between e.g. LibreSSL and GNUTLS

Symmetric stream ciphers

FISH (not seen)
RC4 (deprecated)
CHACHA20

A5/1

Name a few public key ciphers (or signature schemes)...

Public key (asymmetric) ciphers

RSA encryption
ElGamal encryption // LAB

Signature schemes

RSA signature

DSA

ECDSA

ElGamal signature // LAB
Schnorr signature // LAB

Typical use-case (SSL)

P RSA/ECDSA to authenticate
P> negociates a secret and goes symmetric
P and eventually takes advantage of AES offloading

Modes of operation (for block cipher)

ECB (there's a catch)
CBC (to-be deprecated)
CTR (make it a stream)

GCM (idem)

What do you do for the last block, if there is not enough data to fit-in?

Padding

For the last block and with non-streaming modes

zero-padding (the catch is not that obvious)
PKCS#1 v1.5

PKCS#1 v2.0 + RSAES-OAEP

PKCS#1 v2.1 + RSAES-PSS

What about hash functions, any names in mind?...

Hash functions

MD5 (not really deprecated)

SHA-1 (only deprecated for SSL certs)
SHA-2 (SHA-256, ...)

SHA-3 (NIST 2015) -- sponge construction

Note

PKCS#1 v2.2 + SHA 224/256/512

Something about Integrity?...

Loads of acronyms...

P MAC Medium Access Control address (OSI layer 2)
P MAC Message Authentication Code (more than just a hash)
P MAC Mandatory Access Control (vs. DAC/RBAC)

P> aka protected checksum & error detection code

P> aka keyed hash: also message authentication based on symmetric
secret

P> (sign & verify but using the same secret)

P> can be considered as a one-time pad when used for a single message

HMAC — two rounds with inner and outer derived keys
HMAC-MD5 SHA-1 SHA-2 SHA-3
Faster MAC with universal hashing

UMAC x32 optimized
VMAC x64+ optimized
SipHash (Daniel J. Bernstein)

Poly1305 (Daniel J. Bernstein)
MAC based on mode of operation

(CBC?) OMAC CCM GCM PMAC

The special case of AEAD

happy-happy combinations e.g.

AEAD_AES_128_GCM
AEAD_AES_128_CCM
AEAD_AES_SIV_CMAC_256
AEAD_AFES_128_OCB_TAGLENG64
AEAD_CHACHA20_POLY1305
AEAD_AES_128_GCM_SIV

P MAC on both associated data and ciphertext
P MAC depends on context in neighbor messages/blocks

PRNG

P “pseudo”
P> cryptographically secure pseudorandom generators (CSPRGs)
P pseudorandom generator theorem —> one-way function

implementations

P> stream ciphers (RC4, CHACHA?20)
P block cipher with CTR or OFB modes

related to

P trapdoor operation
P> hash functions (for the seed only?)

/dev/random -- requires initialized entropy
—-— previously required enough entropy
(and /dev/arandom behaved like what it now does)

/dev/urandom —-- unlimited (non-blocking)

cat /proc/sys/kernel/random/entropy_avail

cat /proc/sys/kernel/random/poolsize

Are there ways to get a better entropy?...

Hardware

HWRNG & rng-tools

Radio-based (using noise)
User—space software

HAVEGE (HArdware Volatile Entropy Gathering and Expansion)
timer_entropyd

randomsound

Name a few key agreement algorithms...

Key exchange algorithms

DH

DHE (PFS / ephemeral)
ECDH

ECDHE (PFS / ephemeral)

Note it’s also possible to simply encrypt the secret and send it to Alice

CIA triad / quadrad / polyad

P Confidentiality

P Integrity

P Availablility

P (Non-repudiation)

P> Authenticity (Authentication)
P (Accountability)

Apply secure channels & crypto to those concepts
...which one leverages a secret (symmetric cipher)?
...which one leverages public key cryptography?

...and which one protects against MITM?

==>

P> Confidentiality —> symmetric encryption & key agreement (DH)
P Integrity —> hash function (possibly using privkey)
P Availablility
P (Non-repudiation)
P> Authentication —> public key crypto
P —> auth with private key / sign
P —> and also used for key agreement (RSA)

P (Accountability)

How to authenticate /is any public key or certificate fine?...

==> you need a Trust Anchor

Is it a BI-DIRECTIONAL process?...

==> you need to authenticate both sides if server is not public

Client authenticates server

public HTTPS —-- SSL —-- PKIX chain of trust
Stub-client or forwarder authenticates answer

DNS -- DNSSEC chain of trust

Bi-directional

SSH ——- client does TOFU fingerprint & PIN host pubkey
SSH —-- server checks authorized pubkeys
Wifi —-— PSK (when there is)

BTS authenticates handset

GSM 2G -- SIM card

// Questions on practical cryptography?

Tips & Tricks

P> initiate an SSL session & read an X.509 certificate
P remote sniffing

Initiate an SSL session (becomes telnet)

openssl s_client -connect archlinux.org:443

Read an X.509 certificate

openssl x509 -in domain.crt -noout -text

Can we do both at once?...

| openssl s_client -connect archlinux.org:443 \

openssl x509 —-noout -text

Super-duper remote sniffing

ssh -1 root GOT_MIRROR \
”/usr/sbin/tcpdump -n -e -i eth3 -s0 -w - ” \

| wireshark -k -1 -

—e also show MAC addreses
-s0 backward compatible w/ now default packet snapshot

length of 262144 bytes

P> The interface is plugged to a dedicated port-mirror here
P ...otherwise need to filter out ssh itself)

This is the end

