
High Availability & Load-balance

System and Network Administration

Revision 2 (2020/21)

Pierre-Philipp Braun <pbraun@nethence.com>

mailto:pbraun@nethence.com

Table of contents

▶ HA Principles
▶ Fault-tolerance & Acceptance Testing
▶ Scalability

What is Availability?

remember the CIA triad?…

==>
▶ Confidentiality
▶ Integrity
▶ Availability
▶ (Non-repudiation vs. Authentication)

Confidentiality

▶ symmetric ciphers

Integrity

▶ hash functions

Availability

▶ Fault-tolerance & SLA 99.999 (no downtime)
▶ DoS resistant
▶ High-load capable (scalable)

High-profile technical consultant

▶ Some guys look busy… (headphones seem to be useful for once)
▶ On-site at 3AM coordinating with operations
▶ Not just a sysadmin - high pressure and responsability
▶ Here comes the time when you get physical terminals
▶ …and no internet connection

The hidden networks?

▶ Public network
▶ Front-line facing nodes, gateways & Perimeter firewall
▶ DMZ / Perimeter network / CMZ
▶ Internal networks (user, voip, mgmt/backup)

What else exists?… (hint: non-routed networks)

==> Cluster networks (heartbeat & messaging)

==> Storage networks (SAN)

Types of clusters

▶ High Availability (HA)
▶ Load-balancing
▶ High Performance Computing (HPC) aka Grid

New categories in da place?
▶ Distributed storage
▶ Virtualization farm

High Availability Principles

▶ Know the basics before considering Distributed Systems
▶ HA used for decades by the industry for critical use-cases

▶ Stock-exchanges
▶ Space programs - we are talking about servers on earth and not

Byzantine tolerant sattelite hardware
▶ Telco (Telecom Companies)

▶ Subtile hence interesting acceptance testing
▶ Still powerful today e.g. KISS storage cluster
▶ Still needed anyway on the front-facing gateways and load-balancers

HA cluster software

▶ HP MC/SG (MC/ServiceGuard)
▶ RHCS (Red Hat Cluster Suite)
▶ LinuxHA split

▶ Heartbeat vs Corosync (heartbeat per-say)
▶ Clusterlabs Pacemaker (messaging sub-system)
▶ crmsh (SuSE, Ubuntu) vs pcs (Redhat)

▶ KISS heartbeat (serial, UDP, PPP/UDP)
▶ Veritas Cluster Server
▶ SteelEye LifeKeeper (now SIOS Protection Suite for Linux)
▶ IBM PowerHA SystemMirror (formerly HACMP)

MC/SG example use-cases

▶ MC/SG with Oracle Database at Tokyo Stock Exchange
▶ MC/SG with proto-cloud contacts at SFR Telco
▶ you may want to automate things for system preparation

▶ network setup
▶ package requirements
▶ …

hence some distributed shell for 3+ nodes

This is tradition

+---+

| SAN (w/o details on the fabric) |

+---+----------------------------------+----+

|| ||

|| +-----------------------------+ ||

|| | cluster switch | ||

|| | (untagged/access) | ||

|| +-----------------------------+ ||

|| || || ||

+-------------+ +-------------+

| | | |

| mcsg1 | | mcsg2 |

| | | |

+-------------+ +-------------+

(floating IP)

Old school active/active

New graphics for old school

HA resources & packages (resource sets)

▶ Need to associate set of resources as Packages,
▶ e.g. an NGINX service and the Floating IP that goes with it

HA active/active != network load-balance

▶ There may be multiple packages (and floating IPs)
▶ Usually full active/passive (all packages on one node only)
▶ Active/active meant balanced active/passive packages
▶ This is not for cluster-ready and non interfering Docker instances
▶ But rather for old-school critical and usually monolitic services

How to HA?
▶ Fault-tolerance at every level

What for?
▶ reduced down and maintenance time
▶ SLA 99.99 –> SLA 99.999

Fault-tolerance at every level

no SPOF anywhere

▶ Datacenter 2N architecture
▶ Datacenter cooling
▶ Enterprise-class server & RAID controllers
▶ Cluster software

2N architecture

▶ Data-center’s energy supply redundancy
▶ Meaning fully redundant and differentiated supply sources,
▶ with at least one having power-generators as backup

Free cooling

Free-cooling (Facebook in Sweden)

Kill animals

2nd pass air filters

Semi-free-cooling (Scaleway in France)

Rackmounts in a bath

Enterprise-class servers

▶ HPE ProLiant & BladeSystem
▶ Dell PowerEdge
▶ IBM xSeries
▶ SuperMicro
▶ Fujitsu
▶ Huawei (esp. TaiShan…)

DL585

Two disks are enough - RAID-1 for the system to boot

DL585 rear - two PSUs

Recap: enterprise-class servers

▶ Xeon vs Opteron
▶ Lights-Out Management (LOM), always
▶ Or go for ARM (Chinese are comming…)

Hardware RAID controllers

▶ HP/Compaq SmartArray (cciss_vol_status)
▶ Dell - PERC (they have their own interpretation of RAID-1)
▶ IBM - LSI/Broadcom Megaraid (WebUI is ugly as hell)

Software RAID products

▶ mdadm (GNU/Linux)
▶ LVM2
▶ ZFS
▶ RAIDframe (NetBSD)
▶ …

Low-cost & DIY

without enterprise-class servers

▶ keep having Opterons or ARM
▶ live without certification matrixen
▶ you get the change to secure your firmware (Coreboot & friends)
▶ consume a less energy (80 Plus)
▶ remember you cannot manage what you cannot measure - and you

need tools for that
▶ monitor temperature
▶ get alerts for unexpected excess consumption
▶ analyze & diagnose waste (and forget about Bitcoin mining, it’s too

late anyhow, right?)
▶ …and buy a bunker (or a Faraday cage)

Cluster design

Anything wrong with the ASCII diagram from above?…

(remember every component should be doubled)

REDUNDANCY EVERYWHERE
(TWO CLUSTER SWITCHES)

+---+

| SAN (w/o details on the fabric) |

+---+

|| ||

|| +---------+ +---------+ ||

|| | switch1 |-- +---+ switch2 | ||

|| | +---+ | --| | ||

|| +--+------+ | | +----+----+ ||

|| || | | || ||

+-----+-------+ | | +-----+-------+

| +-----+ | |

| mcsg1 |- | | mcsg2 |

| | +-----+ |

+-------------+ -+-------------+

(floating IP)

▶ But then we need to reduce the LACP pipe! (needs to be done on the
switch also)

▶ (Unless another link aggregation method copes with that)
▶ We’re loosing money! (not a problem - actually it is the contrary as

we are selling more IT service)

SLA 99.999 thanks to active/passive trickery

No time for downtime…

▶ Hardware upgrades
▶ Firmware upgrade
▶ System upgrade
▶ HA software upgrade
▶ ~Application upgrade
▶ –> Could also do just restart after local upgrade,
▶ –> however the replicated setup makes it an easy rollback

// Any questions on the principles of HA?

Fault-tolerance

https://xkcd.com/705/

https://xkcd.com/705/

Old-school HA

The simpliest distributed system ever

active nodes > total nodes / 2

▶ Use of quorum + fencing to avoid split-brain situations
▶ Ideally an odd number of nodes
▶ MC/SG Lock LUN - dedicated small LUN where memberships get

written
▶ MC/SG Quorum server - PING & LOCKS (DEDICATED SERVER

JUST FOR THAT)

Fencing / STONITH

▶ A node is failing? Shoot it down (or reboot it)
▶ Using a layer below e.g. UPS/PDU and/or BMC (the cluster quorum

has access to that)
▶ Non-cluster-ready app should not be started twice
▶ Prevent split-brain and data corruption

Floating IP

This is the one traditional cluster software is using
▶ Floating IP (resource-agent script is stairghtforward, possibly DIY

with ip/ifconfig)
▶ MAC address differs
▶ IP get simply taken over by the other node

–or– VRRP vs. CARP

VRRP
▶ LAB // is there VRRP available on linux to play with?

CARP
▶ there is on NetBSD, OpenBSD, FreeBSD, …
▶ Linux has ucarp, though

// Questions so far?

High Availability Acceptance Testing

or why HA-specialized IT consultants do exist

Network redundancy

▶ “Pull each cable and check bonding”
▶ “Kill primary switch”
▶ “Kill secondary switch”

Cluster is still under control

Enterprise-class server takes time to boot so you will have time for multiple
coffees

▶ “Controled migration & node withdrawal”
▶ “Restart the node and rejoin the cluster”
▶ “Repeat for the other node”

▶ Controlled out of cluster service simple power-off

Nodes are crashing

▶ “Crashing nodes ; the ultimate test”
▶ “Ensuring crashed node is fenced”
▶ “Confirm all services recover on the surviving node”
▶ “Rejoining the recovered node and migrating services back”
▶ “Crashing the other node, ensuring its services recover”

Fencing acceptance example 1

Emulate a system crash with Magic SysRq key (reboot)

echo c > /proc/sysrq-trigger

What to expect: fencing should reboot by a BMC call

Fencing acceptance example 2

Pull the power plug(s) on a server.

What to expect: fencing should shoot that node by any means

The fork-bomb test

Make sure services really crash and reboot instead of turning into a loop

▶ Just in case, try a fork-bomb on a node
▶ Tune the status scripts at a higher-level
▶ –> consider a service failing of that does not respond

// Questions on fault-tolerance and fencing?

Old-school was really painful, is there anything new and simpler?…

Btw did we solve the A from the CIA triad?…

==> Solved
▶ Fault-tolerance & SLA 99.999 (no downtime)

==> Not solved yet
▶ DoS resiliant
▶ High-load capable & scalable
▶ DDoS resiliant

Scalability

First, how to be DoS resilient?…

==> infrastructure and code done right

▶ Principle of least privilege
▶ firewall policy
▶ cluster services need to listen internally only
▶ service/app authentication & authorization

▶ KISS / no hype required, less code == less vulns == less bugs
▶ Code harden & pay devs to REMOVE lines
▶ Fast incident response (about monitoring and well-established HA

processes, not about forensics)

Second, how to be high-load resilient?…

==> load-balance ready

▶ Load-balance cluster – apps are stateless and/or cluster-aware
▶ Distributing the network load is the true active/active
▶ Shared data storage
▶ Big-enough pipes

X XX

XX public network X

X

XXX XXX XX

X X X X XX X X

9.9.9.9

+---------+ +---------+ +---------+

| | | | | |

| node1 | | node2 | | node3 |

| | | | | |

+---------+ +---------+ +---------+

▶ got Swarm or K8S cluster
▶ one application end-point with public IP 9.9.9.9

▶ DNS record app.example.net IN A 9.9.9.9

Everything is fine there?

==> NO – all the load goes to only one node
▶ Swarm and K8S do have a network overlay by default, which

re-distributes load to other nodes
▶ however node1 becomes a load-balancer ipso-facto here
▶ node1 is not necessarily sized for that purpose

How to design app.example.net so the traffic gets shuffled around
the nodes?…

==> TWO SOLUTIONS
▶ either by means of DNS round-robin
▶ –or– by means of a load-balancer in between

X XX

XX X

public network X

XXX XXX XX

X X X X XX X X

+---------------------+

| |

+------+ LOAD BALANCE +-------+

| | | |

| +-----------+---------+ |

| | |

| | |

+---+-----+ +-----+---+ +------+--+

| | | | | |

| node1 | | node2 | | node3 |

| | | | | |

+---------+ +---------+ +---------+

Balancing methods

▶ Layer 3 round-robin
▶ Layer 3 round-robin with “sticky connection”

▶ remind src/internal-dst IP addresses
▶ Layer 7

Commercial load-balancers

not sure what part is truly hardware-based

▶ F5 BigIP
▶ Fortinet FortiGate
▶ …

Open Source load-balancers

▶ layer-3 BSD pf vs. npf vs. ipfilter/ipnat
▶ layer-3 Linux Netfilter (iptables vs. nft)
▶ layer-3 eBPF // LAB PoC that!
▶ layer-3+7 HAProxy
▶ layer 7 NGINX / NGINX Plus (dynamic objects?)
▶ layer 7 Apache Traffic Server? (static objects?)
▶ layer 7 OpenBSD Relayd
▶ K8S Ingress / Ingress-NGINX

So can we just replace the previously seen HA setups with load-balancing?

May we simply forget the tradition?…

load-balancing != HA

==> Yes and No
▶ Yes as long as orchestrator manages the instances and VIPs
▶ No if nothing takes care of the cluster health already

HA-capable load-balance

Which ones are HA capable against the back-end nodes/services?

==> With additional scripts, probably any – though maybe not that
corporate nor resilient

==> Built-in for sure aka Health Checks

checking the back-end service

▶ layer-3+7 HAProxy
▶ layer 7 NGINX / NGINX Plus
▶ layer 7 OpenBSD Relayd? // LAB PoC that!

think of fault-tolerance again

What was missing from the diagram above?…

Redundant load-balance

==> THERE WAS A SPOF!

The balancers need to be fault-tolerant also

ACTIVE/PASSIVE - NO DNS ROUND ROBIN
X XX

XX X

public network X

XXX XXX XX

X X X X XX X X

+----------------+ +----------------+

| | | |

+ LOAD BALANCE +---+ LOAD BALANCE +

| | | |

+----------------+ +----------------+

+---------+ +---------+ +---------+

| | | | | |

| node1 | | node2 | | node3 |

| | | | | |

+---------+ +---------+ +---------+

Which balancers can be made fault-tolerant themselves?…

==>
▶ pf with pfsync

▶ any other filter as long as you keep the configuration in sync somehow
▶ and enable some IP failover (VRRP/CARP is better than a VIP)

when it is more than just high load to handle

How to resist DDoS attacks?…

==> DDoS resilient

DDoS Protection at some NOC & ISP
▶ Arbor® Networks Peakflow
▶ Sevi® M6-NG

CDN - a world-wide load-balance scenario
▶ got more reverse-proxies than backends
▶ your backend is unknown to the end-users
▶ your DMZ is somehow the public network itself

BGP 666 black-hole at some NOC
▶ ISP only looses one customer

// Questions on scalability?

