Storage & Performance Graphs

System and Network Administration

Revision 2 (2020/21)

Pierre-Philipp Braun <pbraun@nethence.com>

Table of contents

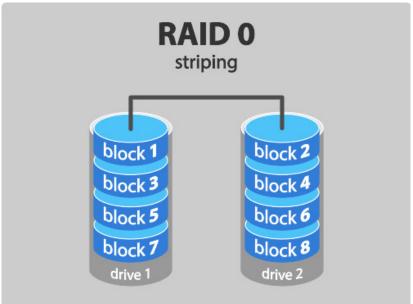
- RAID & Volume Managers
- Old-school SAN
- Distributed Storage
- Performance Tools & Graphs

RAID & Volume Managers

What matters more regarding the DISK resource?...

==> DISK I/O – the true bottleneck

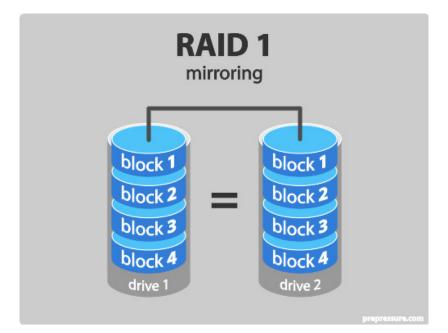
some kind of a resource

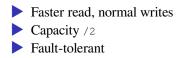

- Input/output operations per second (IOPS)
- ▶ I/O PERFORMANCE is *the* resource one cannot easily scale
- Old SAN == fixed performance

Solutions

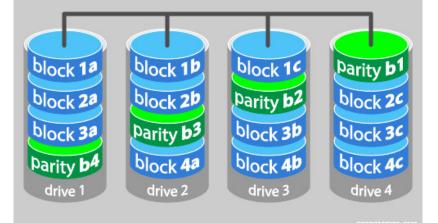
- > NVMe/SSD or Hybrid SAN
- -> Hybrid SAN
- Software Defined Storage (SDS)

RAID TYPES

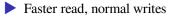

- RAID-0 stripping
- RAID-1 mirroring
- RAID-5 parity
- RAID-6 double distributed parity
- Nested RAID arrays e.g. RAID-10
- (non-raid stuff)


prepressure.com

==> RAID-0 stripping

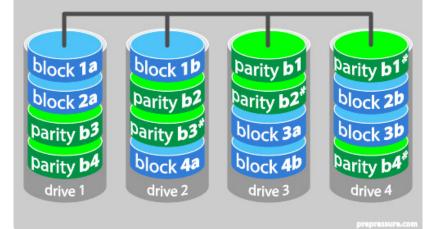

- The fastest array ever (multiply)
- The best resource usage / capacity ever (multiply)
- But absolutely no redundancy / fault-tolerance (divide)

==> RAID-1 mirroring

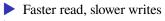


RAID 5 striping with parity across drives

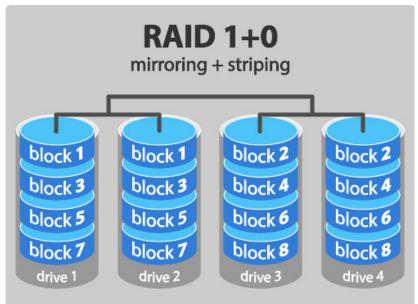
RAID-5 parity


==> RAID-5 parity

Capacity N-1


Fault-tolerance 1 disk (3 disks min)

RAID 6 striping with dual parity across drives


RAID-6 double distributed parity

==> RAID-6 double distributed parity

- Capacity N-2
- Fault-tolerance 2 disks (4 disks min)

RAID 1+0 aka 10 (nested)

prepressure.com

- Numbers in order from the root to leaves
- Got advantages of both RAID-1 then RAID-0
- The other way around is called RAID-0+1

Hardware RAID controllers

- Hardware RAID ~ volume manager
- System will think it's a disk while it's not

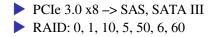
Bad performance w/o write cache

- Need for batteries so outstanding requests can be flushed in case of power failures
- Write-cache gets DISABLED if battery not present...

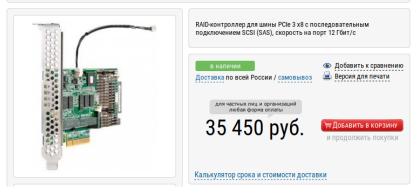
7Y37A01085, Контроллер Lenovo ThinkSystem RAID 930-16i 4GB Flash PCIe 12Gb Adapter

Ном. номер: 8000262838 PartNumber: 7Y37A01085 Производитель: Lenovo

lenovo



 Изображения служат только для ознакомления, см. техническую документацию



Lenovo (733/AULUS). Поддерживаемые интерфенсы носителя: SAS, Senia IAI III, O интерфейс: PCI Express x8, Формат PCI карты: Полной высоты (низкопрофильный). 1, 10, 5, 50, 6, 60, Оперативная память: 4000 ME, Чипсет: LSI SAS3516. Семейство LSI. Совместимые операционные системы: Microsoft Windows Server 2012 R2 Micros Server 2016 Red Hat Enterprise Linux 6 Server...

LSI SAS3516



210746 Контроллер НР 820834-В21

P440/2

263755 RAID-контроллер НР 804405-B21

P408e-p

Батарея HPE 96W Smart Storage (до 20 устр./145мм каб., аналог 875241-B21) (P01366-B21)

Люсиновская Дорогобужская Удаленный склад (Отсутствует) (Отсутствует) (Очень мало) Цена: 6760 ₽

Software RAID

Also bad performance w/o write cache

- Need for an UPS -or-
- 2N & redundant PSUs

Any software RAID products in mind?...

==> Software RAID products

- Linux raidtools/raidtools2/mdadm
- Linux LVM2 mirror (not bootable)
- ZFS pool on Solaris, FreeBSD, NetBSD, Linux
- NetBSD RAIDframe
- b got more?

-> If bootable media, enable firmware to boot on both disks...

Non-raid stuff

Unraid

data stored and available by independent disks
 parity done separately

// Questions so far on RAID?

How a systems gets to know about (virtual) disk changes

some magic vmm@ needs to know

Ack a new/deleted disk

ls -lF /sys/class/scsi_host/
echo "- - -" > /sys/class/scsi_host/host0/scan

Ack a larger/smaller vdisk

ls -lF /sys/class/scsi_device/scsi=0:0:0:0
echo 1 > "/sys/class/scsi_device/\$scsi/device/rescan"

Software volume managers

far more flexible than RAID controllers

- XVM
- ZFS
- Veritas VxVM
- Microsoft® Logical Disk Manager

LVM2 basics

MBR partition type

8e Linux LVM

GPT partition type

8E00 Linux LVM

Don't even bother if it is on a secondary disk!

pvcreate /dev/sdb vgcreate datavg /dev/sdb lvcreate -n datalv -l 100%FREE datavg

Check

pvscan / pvs vgscan / vgs lvscan / lvs Flexible you say?...

Increase VG/LV/FS with new disk

check available VG size after its extend

pvcreate /dev/sdb vgextend vg_rhel6vm1 /dev/sdb vgdisplay vg_rhel6vm1 | grep Free

hot-grow the LV, even for a system volume

lvextend -l +2559 /dev/vg_rhel6vm1/lv_root
-r
100%FREE?

finally extend the FS

resize2fs /dev/vg_rhel6vm1/lv_root
xfs_growfs /dev/mapper/vg_rhel7-lv_root

Hot-shrink a data volume

before you plan to reduce virtual disk size...

```
fsck -f /dev/mapper/vg_data-lv_data
```

...144315055/199750656 blocks

```
echo $((199750656 * 4096))
818178686976
```

à la louche à 1GiB prêt

resize2fs /dev/mapper/vg_data-lv_data 650G
...170393600 (4k) blocks.

```
echo $((170393600 * 4096))
697932185600
```

avec la même louche

```
lvdisplay --units B /dev/vg_data/lv_data
```

```
lvreduce --size 650G /dev/vg_data/lv_data
# --resizefs
```

lvdisplay --units B /dev/vg_data/lv_data

then finally shrink the virtual disk or remove some PV

```
pvs
pvremove /dev/sdb
# /dev/sdb1
```

Even more flexiblility you say?...

THE GOLDEN HORDE

MIGRATE FROM ONE SAN TO ANOTHER WITHOUT INTERRUPTION

pvcreate /dev/sdb

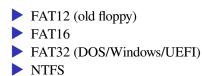
vgextend vgdata /dev/sdb

pvmove -v --interval 5 /dev/sdc1 /dev/sdb

AND POSSIBLY WITH PAUSE/RESUME

^C

pvmove


When volume fully migrated, clean-up and get rid of the old SAN

vgreduce vgdata /dev/sdc1 pvremove /dev/sdc1 // Questions on volume managers?

File-systems

What do we have for DOS & Windows vs Linux?...

DOS & Windows

Linux

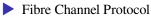
- btrfs (has compression)
- ext2,3,4
- xfs (SGI)
- jfs (IBM) big files
- reiserfs (conflict with community AND killed his wife) small files
- reiser4 (has compression)

Any exotic systems? Are there other file-systems out there?...

Other UNICES

- FreeBSD UFS/UFS2, EXT2FS
- OpenBSD/NetBSD FFS/FFS2, EXT2FS
- MINIX file-system base for Linus' ext (later ext2)
- LAB // what about BeOS's and more exotic systems' FS?

// Questions on file-systems?


Old-school SAN

Protocols

- ▶ iSCSI
- Network Block Device (NBD)

Terminology

- Fabric Switch / Fibre Switch
- GBICs / Mini-GBICs
- Initiator

Architecture

- Rackmounts full of disks
- Redundant SAN controller
- Split into multiple RAID groups e.g. RAID-50 arrays or whatever
- Then spliting those again into LUNs
- Delivering those through SAN Switch Fabric(s)

Storage bays

- DELL EMC hybrid-flash
- DELL EMC SC series
- DELL EMC VMAX
- HPE 3PAR StoreServ
- Netapp NVMe-over-Fabrics
- IBM goes flash too
- Got competition! Lenovo Storage S2200 and S3200
- Hitachi Vantara
- Huawei OceanStor (all-flash vs hybrid)
- Oracle ZFS Storage (software RAID!)
- Fujitsu ETERNUS (SDS!)
- WD Ultrastar Hitachi Global Storage Technologies (HGST)

Open Source storage

take a server with loads of disks

- XigmaNAS (formerly NAS4Free) early FreeNAS fork
- iXsystems TrueNAS all OpenZFS powered * CORE (formerly FreeNAS) * ENTERPRISE (commercial) - hybrid-capable * SCALE (Linux-based) - convergence-capable
- ESOS Enterprise Storage OS got iSCSI & FC targets

and others...

- OpenMediaVault (OMV) Debian-based, mostly NAS
 - Openfilter CentOS-based, got iSCSI & FC targets

Got dedicated hardware?

somehow yes, as many SAN/NAS vendors embbed Linux

QNAP (Taiwan)?
Synology (Taiwan)?
Thecus (Taiwan)

not really...

- ODROID-HC2 / ODROID-XU4 with an LCD
- LG N2R1 / N2B1 / N1T1 Tantalus' Firmwares
- idem with NetBSD

HA-capable

compete with storage bay controllers...

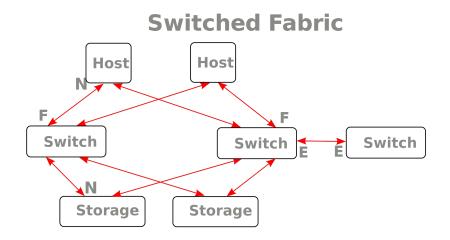
- XigmaNAS HA thanks to HAST
- TrueNAS HA only with commercial version
- ESOS HA thanks to DRBD

Fibre switch w/o GBICs

Mini-GBICs

XFR vs SFP+

Fibre switch w/ GBICs


Brocade 5120 40x 8Gb Active SFP+

Switch Fabric(s)

- Redundant Switch Fabrics (optional)
- Setting up zoning
- Setting up LUN masking

Single Fabric

SAN initiators

Redundant Host Bus Adapters (HBA)
 Obtaining sdx for every path through the Fabric(s)

How to deal with the redundant disk devices?...

Linux DM Multipath

CentOS/RHEL

yum install device-mapper-multipath vi /etc/multipath.conf systemctl start multipathd

Ubuntu

apt install multipath-tools
vi /etc/multipath.conf
systemctl start multipath-tools

(all)

multipath -ll
ls -lF /dev/mapper/mpath*
ls -lF /dev/mpath/mpath*

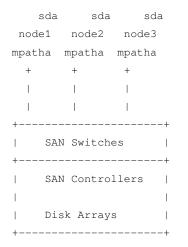
Mixing up protocols

- FC over Ethernet (FCoE)
- FC over IP
- Internet Fibre Channel Protocol (iFCP)
- ▶ iSCSI (SCSI over TCP/IP)
- Ethernet over Infiniband

Specifics about iSCSI vs. FC

- Same target / initiator convention
- Fibre Channel World Wide Names (WWN)
- But without FC Switch Fabric nor zoning
- ▶ iSCSI Qualified Name (IQN)

So why is it cheaper?


==>

- No SAN-specific switches and cabling (no Fibre Channel)
- Can be used on the same network switches with physical VLANs (untagged/access)
- Dedicated NICs are recommended (ideally 10Gbit/s)

// Questions on SAN targets and initiators?

S	da	sda	sda
node	1 noc	de2	node3
sdb	sdb	:	sdb
+	+		+
	1		1
	1		1
+			+
SAN Switches			
+			+
	SAN Cor	ntrol	lers
I			T
I	Disk Aı	rays	I
++			

RAID is here and there...

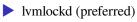
Can I use a casual file-system on mpatha?

==> NO - casual file-systems are single mount

Deal with LUNs

don't mount it

–or– monut it only once


or-... how to deal with multiple mounts?...

==> Shared-disk file-system

aka clustered file-system

- Redhat GFS2
- OCFS2
- VxFS (Veritas Cluster File System)
- IBM GPFS
- SGI CXFS
- Lustre

==> Eventually volumes as well

CLVM

VxVM (Veritas Volume Manager)

// Questions on shared-disk file-systems?

Storage Area Network

> you get disks (LUNs)...

Network Attached Storage

> you get a network file-system (CIFS, NFS, ...)

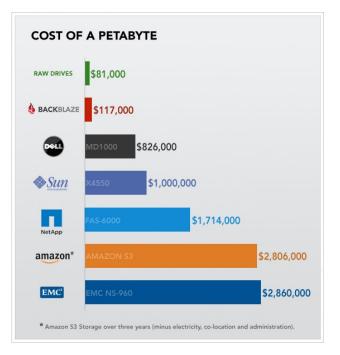
Network file-system flavors

- NFS v2 (need re-enable it for some old network boot-loaders)
 NFS v3
- NFS v4
- CIFS (fine for end-users...)

File ownerships & permissions

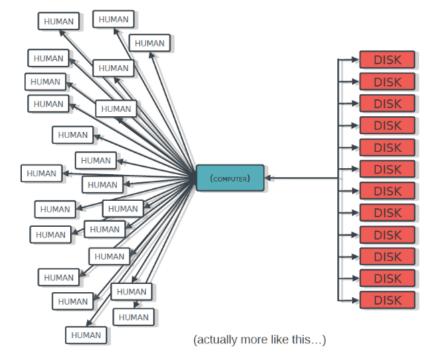
- Got an NT4 domain? Plug Samba 3 to the DC.
- Got an AD domain? Plug Samba 4 to the AD.
- ==> enable ACLs in fstab and reboot
 - Got NIS or LDAP domain? Simply plug the NAS or NFS server to it.

Remember the VMM farm architecture with its oblivious resource?... So SAN or NAS, which is best for guests?... ==> Block devices (disks through SAN) are faster


- Because there is one less layer of file-system
- Because that lower-layer goes through *some* network protocol
- But NFS and vdisk on QCOW2 or sparse files makes life easy
- Just like Oracle RDBMS datafiles vs ASM...

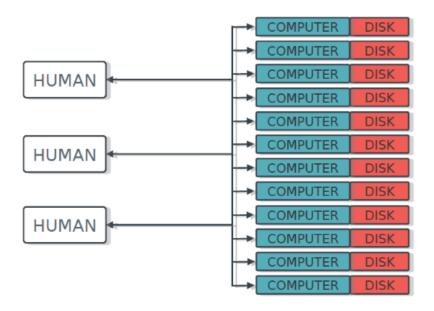

Tricky sploiler - vdisks on shared-disk file-system are also possible

// Questions on NAS?

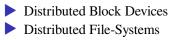

Distributed Storage

What kind of business market is this?...

Everything is fine



How do you design a storage system that scales?...


New-school POWAAAAAAA

This is the new school: servers full of disks as a cluster

Smart RAID over the network
 –or– full-blown Distributed Systems

Storage layers

Distributed Object Storage

Distributed Block Devices

Ceph Block Device (FreeBSD + Linux)

- Gluster Block Device
- DRBD v8 (Linux)
- DRBD v9 (Linux)
- DRBD v9 + Linstor (Linux)
- HAST (FreeBSD)

Distributed File-Systems

- GlusterFS
- HDFS

• Google File-System (this time it is Google's GFS...)

Distributed Object Storage

Ceph Object Storage

- Hadoop? (on top of HDFS)
- Bigtable? (on top of GFS?)
- MinIO

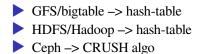
But you always got NoSQL otherwise

- Apache Cassandra -> Scylla is much faster (C vs Java...)
- MongoDB, CrateDB, etc.

Distributed Storage Architectures

network mirror(s)

distributed system algorithm


Network mirror(s)

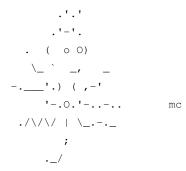
- DRBD (Linux) primary / secondary (got write-cache!)
- DRBD (Linux) dual-primaries (slower during guest migration only, no write-cache)
- HAST (FreeBSD)
- -> That works, but only for the equivalent of RAID-1

DRBD setup types

- DRBD against physical disks
- DRBD against physical volumes (possibly hardware RAID)
- DRBD against MBR/GPT partitions
- DRBD against LVM2 logical volumes
- DRBD against LVM2 LVs w/ thin provisioning (no CLVM/lvmlockd needed!)

Distributed system algorithm

Hash-table

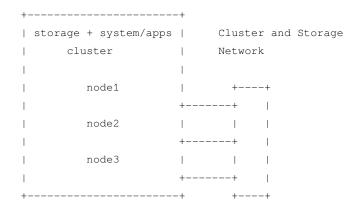

not necessarily time-efficient while redistributing data

CRUSH

some kind of hash-table but it is more complex
 efficient re-distribution when you scale your cluster

// Any question on the principles of distributed storage?

Convergence



A safe separation

+			
system/apps	Ι	storage	dedicated
cluster	Ι	cluster	network
	Ι		
	I		++
node1	I	nodel +	+
	I		
node2	Ι	node2 +	+
	Ι		
node3	Ι	node3 +	+
	+		++

- Can also be virtualization + system/apps
 Dedicated network for storage (phy vlan/access)
- Dedicated network for cluster (phy vlan/access)

Convergence

Converged Infrastructure

node1		node2		node3
+	+	+	-+	++
I			I	
Services		Services	I	Services
1			I	
Guest systems		Guest systems	I	Guest systems
I			I	1
+	+	+	-+	++
I		1	I	
XEN or KVM		XEN or KVM	I	XEN or KVM
I		1	I	
+	+	+	-+	++
I		1	I	
Distributed		Distributed	I	Distributed
storage		storage	I	storage
I			I	1
+	+	+	-+	++

-> THREE OR FOUR STACKS on the same hardware

- Less hardware maintenance, less costs and resource optimization
- Everything is distributed -> scale-out capable
- One node dies, every cluster stack deals with it on its own
- VLANs kept separate for cluster vs storage

But...

PERFORMANCE BOTTNECK MAY HIT YOU HARD NO WAY FOR DISTRIBUTED NAS THIS IS FOR DISTRIBUTED SAN ONLY

- Plug to DRBD / Ceph RBD / Gluster Block Device cluster
 - Not to CephFS nor GlusterFS

==>

.'.' .'-'. . (o 0) _`_, _ -.__'.) (,-' '-.0.'-..-. mc ./\/\/ | _.-._ ;

// Any question on converged infrastructures?

Software Defined Storage (SDS)

related but not identical to distributed storage

- Storage virtualization
- ~Replication
- > ~Data de-duplication
- Thin provisioning

And more generally, the ability to manage volumes by an API or some integration plug-in e.g. Proxmox plugs to DRBD (LAB).

// Questions on software defined storage?

Performance Tools & Graphs

- Tools for troubleshooting and sizing
- Performance graphs for daily activity and RCAs

Performance bottleneck troubleshooting

What if the service is up but does not perform well?...

Namely, users and customers are complaning about latencies are are saying "it is slow".

==> need to find the performance bottleneck

Know what resources you need

- for P2V & V2V
- ▶ for P2C & V2C (cloud migrations)

Note another way to go is to give max power to all guests and closely monitor their consumption (private cloud only).

RESOURCE TYPES TO TRACK

- CPU (usage vs. load queue)
- RAM USAGE (& RAM BUS)
- DISK I/O
- NETWORK TX/RX PER INTERFACE

How to check for CPU usage and load queue manually?

==> CPU

uptime

top -b

htop

X11

xload

conky

gkrellm

XEN

xentop -b -i 1
#--> CPU(sec) CPU(%)

How to check for RAM usage manually?

free -m

htop

XEN

```
xentop -b -i 1
#--> MEM(k) MEM(%) MAXMEM(k) MAXMEM(%)
```

How to check for DISK I/O manually?

==> DISK I/O

```
apt install sysstat iotop
iostat -d 30 /dev/sda
iostat -x /dev/sda #--> %util
iotop -b -n 1
```

XEN

xentop -b -i 1
#--> VBD_RD VBD_WR
#--> VBD_RSECT VBD_WSECT

How to check for NETWORK INTERFACE TX/RX manually?

==> NETWORK TX/RX PER INTERFACE

iftop -i eth0
iptraf
trafshow
nload
nethogs eth0
vnstat -i eth0

XEN

xentop -b -i 1
#--> NETTX(k) NETRX(k)

And many others...

bmon, bwm-ng, cbm, slurm, tcptrack, netload, collectl, speedometer, pktstat, netdiag/netwatch, ifstat, dstat

Performance graphs

... that was just some UI (Grafana)

Performance graphs

Goals per system

- See how well your bare-metal systems are sized
- *idem* for guests

Spot the waste (and possibly a DoS attack) e.g.

- Who's using 100% ram?
- Who's using 100% disk i/o?

Also useful for

- Root Cause Analysis (RCA)
- Sizing machines and migrations e.g. P2V & V2V

Goals per hypervisor

- See how well your cluster farm is behaving
- (is the orchestrator doing its job?)
- RAM over-commitment vs. TMEM
- > 70-90% is good (depending on your cluster size)

and beyond the 4 resource types

Virtual disks' thin-provisioning

Products?...

==> THE COMPETITION

SolarWinds – major leakage lately...
 Any other proprietary product in mind?

==> FOSS & commercial

- Nagios XI incl. performance graphs
- Monit & M/Monit (graphs built-in)

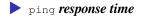
LAB // is there anything closed-source in Nagios XI? Use The Source, Luke.

==> OPEN SOURCE ASSETS

Grafana -> Prometheus

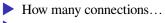
vs. -> graphite
vs. -> influxdb

Zabbix (graphs built-in)
Munin + RRDtool
Icinga 2 // LAB
Sentry? // LAB
Nagios Core?
(Monit - agent can send metrics...)


LAB // try some performance graphs plugin for Nagios Core (without XI)

- see resources

Various ways to get the metrics


- Agents (auto-deploy)
- Hypervisors
 - XEN xentop
 - XEN light library
 - some KVM equivalent? // LAB
 - possible from VMware ESXi or vSphere? // LAB
- SNMP

App & services' QA

Business logic monitoring

Activities e.g.

▶ How many users...

Time-Series DBMS (TSDB) engines

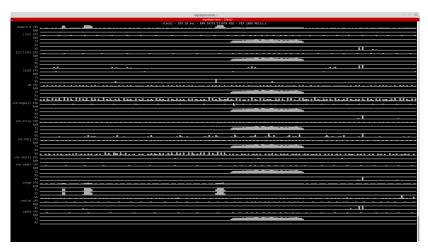
- Prometheus (& poor dashboard)
- Graphite (& poor dashboard)
- ElasticSearch as in ELK (& dashboard)
- Cacti?

Dashboards

Full-featured

GrafanaKibana as in ELK

DIY


- MRTG vs. RRDtool
 Highcharts/Highstock
 Wants JSON
 Displays LIVE
- Spark (text-based UTF-8 bars)

Data collectors -> TSDB

- Node_exporter -> Prometheus (OpenMetrics)
- Collectd –> Graphite/Carbon
- Statsd -> Graphite/Carbon
- Logstash –> ELK
- ► Telegraf –> InfluxDB
- Glances –> InfluxDB

Domain-0	CPU	
Domain-0		
vadim	CPU	
vadim	RAM	
ilnar	CPU	
ilnar	RAM	
snegw	CPU	
snegw	RAM	
kirilldns	CPU	
kirilldns		
sne-drive	CPU	
sne-drive	RAM	
mm	CPU	
	RAM	
sne-vhost1	CPU	
sne-vhost1	RAM	
sne-bogatyr	CPU	
sne-bogatyr	RAM	
sne-vmdmr		
sne-vmdmr	RAM	
sne-k8s1	CPU	
sne-k8s1	RAM	
load2	CPU	
load2	RAM	

No Web Required

No Web Required

LOAD TEST ACCEPTANCE

How to benchmark vs. stress-test?...

==> Benchmarking == dedicated resources (ideally bare-metal) ==> Stress-test == just push-up the volume

LOAD STRESS CPU

assuming 16 cores

stress --cpu --cpu 16 openssl speed -multi 16

assuming 16 cores

stress --vm 16 --vm-keep

alternative to avoid OOM

mkdir -p ram/
mount -t tmpfs -o size=7168M tmpfs ram/
dd if=/dev/zero of=ram/ramload bs=1M

LOAD STRESS DISK

Get some idea about disk's speed

hdparm -tT /dev/sda

Stress the disk

time dd if=/dev/zero of=device-or-file bs=1G count=30
bonnie++ ...

assuming 16 cores

stress --io 16

LOAD STRESS NETWORK INTERFACES

Flood the network in one direction (UDP)

iperf3 -c -u x.x.x.x

-or- regulate while checking how much packets got there (TCP)

iperf3 -c x.x.x.x

// Questions on performance monitoring?