
Version Control Systems, Documentation Management &
Helpdesk

_ _

.-. | | |

|M|_|A|N|

|A|a|.|.|<\

|T|r| | | \\

|H|t|M|Z| \\ ”Bookshelf” by

| |!| | | \> David S. Issel

””””””””””””””””””

System and Network Administration

Revision 2 (2020/21)

Table of contents

▶ VCS History
▶ VCS Operations
▶ Hosting VCS UI
▶ Documention Management
▶ Bug-Tracking & Helpdesk Systems

VCS History

What is it good for?…

▶ dealing with large amount of code
▶ dealing with large development team
▶ trace back issues and incriminating commits

what content to version control?
▶ for code, obviously
▶ documentation (Markdown, RST)
▶ web design (CSS)
▶ (anything text-based)

even binaries with Git Large File Storage (LFS)

–> pointers instead of blobs

Two bits of history…

▶ 1st gen: pessimistic
▶ 2nd gen: optimistic
▶ 3rd gen: distributed

Pessimistic

▶ Source Code Control System (SCCS)
▶ GNU Revision Control System (RCS)

–> file locks

Optimistic

▶ Concurrent Versions System (CVS)
▶ Subversion (SVN)
▶ Helix Core (Perforce)

–> merging when no conflicts

–> fix conflicts manually

Distributed VCS // nvie.com

How can alice have two git remotes?… (same for david)

Distributed

▶ BitKeeper (open-sourced 2016)
▶ Darcs
▶ Mercurial
▶ GIT
▶ GNU Bazaar

–> even branches can merge…

How to fix conflicts?…

==> you get to edit the conflicting changes manually during commits (very
similarly as with CVS)

CVS in theory

▶ local copy of remote repository
▶ remote is kind of bare…
▶ commit == push your change to the online and centralized repository
▶ no staging
▶ use tag (branch) to track a (rather large) bunch of changes together
▶ centralized but highly-available (mirrors)
▶ current/dev == trunk (no branch)

GIT in theory

▶ local repository
▶ staging
▶ commit locally (implicit tag)
▶ push to remote
▶ commits are more frequent than CVS
▶ current/dev == master branch

BitKeeper & Linux History

▶ Linus Torvalds (really not a zealot)
▶ Richard Stallman, Alan Cox (бородач)
▶ Andrew Tridgell (communication protocol nerd who did not agree on

the license)

ESR’s book makes sense

▶ the cathedral vs the bazar
▶ –> CVS (BSDs) vs Linux (GIT)

VCS Operations

(\

\'\

\'\ __________

/ '| ()_________)

\ '/ \ ~~~~~~~~ \

\ \ ~~~~~~ \

==). __________\

(__) ()__________)

CVS operations

export CVSROOT=”anoncvs@anoncvs.MIRROR.netbsd.org:/cvsroot”

export CVS_RSH=”ssh”

cvs checkout -P src

#-r netbsd-9

cd src/

cvs update -dP

stage and commit

cvs add new-file

cvs commit

revisions

cvs log

just the headers

cvs log -h

Create CVS repo

create the remote repository

cvs -d ~/cvsroot init

export CVSROOT=~/cvsroot

cvs import -m ”” project project initial

▶ first argument: remote folder name for the repository
▶ second argument: vendor tag, define your organization
▶ third argument: release tag, initial, current or v0.0

create the CVS tracking within the existing folder

cvs checkout -P project

GIT operations

git clone <source> <dest>

https:// -- need to login for read-write access...

git://

ssh:// -- much nicer with authorized keys

stage and commit

git pull

git add new-file

git commit

git push

staging diffs

git add ...

git commit

git push

staged diff

see what has changed

git status

see what’s been staged for commit already

git diff --cached --stat

git diff --cached

git status -v

Review commits

see the changed files

git log

git show COMMIT --stat

see all the diffs

#git log -p

git show COMMIT

Create GIT repo

local vs. hosting

remote clients cannot push

cd project/

git init

git add file1 file2

git commit -m initial

remote clients can push

cd project.git/

git init --bare

can convert bare to normal and vice versa

GIT in production

update the list of branches and switch to the new revision

git fetch -a

git checkout release-1.1.0

git pull

and restart the application

WARNING DO NOT SHARE THE .git/ FOLDER ON THE WEB!

(\

\'\

\'\ __________

/ '| ()_________)

\ '/ \ ~~~~~~~~ \

\ \ ~~~~~~ \

==). __________\

(__) ()__________)

// Questions on VCS operations?

CVS branches

GIT branches

H---I---J topicB

/

E---F---G topicA

/

A---B---C---D master

new branch myfeature

git checkout -b myfeature develop

merge back to develop non-fast-forward

git checkout develop

git merge --no-ff myfeature

git branch -d myfeature

git push origin develop

The other guy says linear commits are better: helps resolve code
dependency issues

Anyway he advertises

git rebase --interactive

GIT branching models

A successful Git branching model, Vincent Driessen, 2010

A succesful Git branching model considered harmful, Jussi Judin, 2016

–> Trunk based development (https://trunkbaseddevelopment.com/)

https://trunkbaseddevelopment.com/

Gitflow workflow
▶ usual production is based on release tarballs
▶ but GIT repo can be used as well
▶ no need to select a branch for production

Trunk-based workflow
▶ makes more sense for developers who want to contribute
▶ same for sysadmins who need bleeding-edge features
▶ the thing they fetch is development/current

Main branches // nvie.com

Feature / Release / Hotfix // nvie.com

master for development // trunkbaseddevelopment.com

// trunkbaseddevelopment.com

Merging method recommended practice

▶ do not git-merge (join two or more development histories together)
▶ but git-rebase (re-apply commits on top of another base tip)

Seems to be nice with Gerrit…

Best practices by Aleksandr

1. Use master/develop branches, with featuse-based (or sometimes even
task-based) branching for develop because it gives you better tracking
of your tasks. (And also short branches make merging less painful)

2. Use same format for commit messages. If you violate this rule or
dont have rule at all, your colleagues will not understand what you
have just change if there is a lot of code in your repo. I try use like
git commit -m ”ADD: some feature; UPD: optimized

algorithm; FIX: some bug; DEL: file I dont need”

3. If your version control tool allows to do that, configure CI instructions
for pull requests to both: master and develop branch. Because your
system will probably be deployed on server for prod and servers for
test

4. If you make a change in architecture, make a separate branch with
name which differs from your feature-based branches

5. Less branches = good

Hosting VCS UI

online hosting vs. on-premises

VCS “In the cloud”

▶ easy public & open-source repositories (read-only for everyone)
▶ server-less hosting
▶ Public/ro access (https:// & git://)
▶ Commit/diff visualization UI
▶ Bug/issue tracker
▶ Markdown/HTML renderer
▶ Wiki
▶ Release tarballs
▶ (Social network)
▶ No advertisments

VCS hosting market

▶ Github
▶ Gitlab.com – got source
▶ Atlassian Bitbucket (Mercurial, GIT)
▶ Atlassian FishEye (CVS, SVN, Mercurial, GIT, Perforce)
▶ Savannah (CVS, GIT, GNU Bazaar)

▶ GNU
▶ Non-GNU

▶ gnumonks.org (GIT)
▶ GPL-only

Any problem with this?…

▶ If it’s free, you’re the product
▶ Google is watching your every move
▶ Github?…

▶ It does not get much better even if you pay for it
▶ Cannot be used for critical data, even on Github’s private repo offer
▶ Esp. not if there is your

▶ internal sysadmin documentation
▶ SCM infrastructure setup configurations
▶ possibly containing IP addresses

So what if you want to host a repository yourself?…

VCS on-premises

▶ makes sense for private repos
▶ easy rw/authenticated access (ssh://)
▶ but you get only the repo,

▶ no UI
▶ no bug-tracking
▶ no nothing!

VCS self-hosting suites

CVS
▶ ViewVC (CVS, SVN)
▶ CVSWeb
▶ OpenGrok (CVS, SVN, Mercurial)

GIT
▶ Gitlab – on-premises
▶ Gogs / Gitea
▶ GitWeb
▶ Cgit
▶ Gerrit (GIT) – heavy client

Hybrid
▶ Redmine (CVS, SVN, Mercurial, GIT, Bazaar)
▶ Trac (SVN, GIT)

Nice Redmine theme

Redmine/SVN

Redmine/GIT

Software Configuration Management (SCM)

▶ Ansible, Puppet, Chef, Saltstack, …
▶ includes Version Control Systems
▶ although it has a broader meaning
▶ as broad as Infrastructure as Code

// Questions on hosting VCS UI?

Who likes Java?

==> almost nobody, but there are a few exeptions where Java r0cks
▶ SIMTester
▶ CAS for SSO
▶ Apps leveraging ElasticSearch
▶ Apps leveraging Hadoop

Documentation Management

/ /,

/ //

/______//

(______(/

Jussi Roine

Normal Documents

▶ Old-school network shares
▶ LibreOffice supports edit locks?

BONUS QUESTION // check if libreoffice has the file-share locking
notice as Word does

Collaborative Documents

WYSIWYG
▶ Google Docs
▶ NextCloud / Collabora
▶ Collabora Online Development Edition (CODE) Docker Image

Markup
▶ v2.overleaf (LaTeX –> PDF)
▶ hackmd.io (Markdown –> HTML/PDF)

Which one do you have to avoid, by law?…

FEDERAL LAW 152 on personal data

==> avoid Google Docs

What is personal data?…

==> any combination of
▶ name surname
▶ phone number
▶ email
▶ tax
▶ cards
▶ address
▶ birth date
▶ …

Try host and traceroute against Google’s services…

==> NOT HOSTED IN RUSSIA (at least not the entry points)

Note that even if it where, a CDN can be misleading.

Content Management System (CMS)

ON-PREMISES
▶ Wordpress (possibly headless)
▶ Joomla
▶ Drupal
▶ …

Wiki is dead

▶ Crappy syntax
▶ Docs are unmaintained (but Wikipedia)
▶ Docs now often go within the code repository

DokuWiki Syntax

bold

//italic//

__underline__

''monospace''

^{super}

_{suber}

crossed

Markdown Syntax
main title

title2

italic

bold

<TAB>code block

<4 spaces>code block

some text

some `inline code` and text

1. ordered item

1. ordered item

- unordered item

- unordered item

* nested item

* nested item

Markdown to HTML

Discount is the fastest

apt install discount

inline convertion

markdown file.md > file.html

full web page creation

mkd2html file.md

Markdown to PDF

Markdown –> LaTeX –> PDF

pandoc file.md -o file.pdf

Documentation Management System (DMS)

IN-THE-CLOUD WYSIWYG
▶ Altasian Confluence

ON-PREMISES Wiki syntax
▶ MediaWiki (PHP)
▶ DokuWiki (PHP), no database

ON-PREMISES Markdown syntax
▶ Redmine (Wiki/Markdown plugin)
▶ GIT/Gollum

▶ gets best edited locally
▶ web interface is good only for reads

▶ CODIMD / HackMD’s engine
▶ nice web interface for collaborative interaction

Learning Management System (LMS)

▶ aka Virtual Learning Environment (VLE)
▶ aka Learning content management system (LCMS)

ON-PREMISES
▶ Moodle
▶ any other one?

/ /,

/ //

/______//

(______(/

Jussi Roine

// Questions on doc mgmt?

Bug-Tracking & Helpdesk Systems

Proprietary
▶ SpiceWorks
▶ any other in mind?

FOSS
▶ GLPI – inventory and fleet maintenance
▶ Redmine – project mgmt & bug tracking
▶ Bugzilla – used at Redhat & FreeBSD
▶ GNATS – used at NetBSD
▶ ORTS – the heavy germans
▶ Trac – SCM & project mgmt

Corporate workstations…

Users may not have root/administrator access
▶ less damage when infected (userland only)
▶ your chosen daemons will run…

Workstation incident monitoring

assuming a dedicated host group

▶ workstation status on the incident dashboard
▶ apps installed?
▶ system up-to-date? – no need to update an inventory

▶ eventually more in the status without alerting
▶ VPN enabled?

LAB // monitor and PoC a fleet of workstations with appropriate scripts

Workstation performance monitoring

▶ eventually grab performance metrics
▶ but not every 30 seconds
▶ (& caching-capable)

LAB // which are the caching-capable agents?

Rescuing workstations

Assuming internal network or vpn

You got a ticket from a user asking for help on his desktop env

How to go and reach his desktop?…

Remote desktop protocols

▶ RDP (new session)
▶ VNC & alike (possibly same user session)
▶ SSH with X11 forwarding (apps only)

even easier when no graphical interface is required
▶ SSH (can do a lot including nmcli…)

–> simply deploy ops’ pubkey(s) on all workstations (and bind sshd to
internal IPs)

Remote desktop products

Windows
▶ (RDP server)
▶ ultravnc
▶ realvnc

GNU/Linux
▶ x11vnc vs. tigervnc vs. tightvnc
▶ NoMachine
▶ X2GO
▶ XRDP (RDP on MacOS and Linux)
▶ SSH with X11 forwarding (screen not shared with the user)

clients-only

▶ rdesktop – RDP
▶ Remmina – RDP
▶ ultravnc – VNC

SSH with X11 forwarding
On the server-side

apt install xauth x11-apps

xvfb

Note XVFB prevents from installing a full-blown X server

On the client-side

windows + xming or mobaxterm

PuTTY + enable X11 forwarding

gnu/linux

ssh -X / -Y ...

check when ready

xclock

xeyes

What to do when the user is behind a foreign NAT?…

==> two solutions
▶ intermediate server
▶ reverse tunnel

With an intermediate server

GUI
▶ (TeamViewer)
▶ (AnyDesk)
▶ NoMachine? // LAB as intermediate?
▶ X2GO? // LAB as intermediate?

CLI
▶ tmate

Note: similar to SSH + screen -x

With an reverse tunnel

CLI or GUI, whatever you need
▶ setup a script on user’s machine beforehand (hint: ssh -R)
▶ which calls a dedicated shell server of yours to create a reverse tunnel
▶ enable that script at init time

You can then connect to the appropriate port on your reverse-bounce
server.

// Questions on rescuing workstations?

